# Lean - Programming language

< >

Lean is an open source programming language created in 2015 by Leonardo de Moura.

Source code:
`git clone https://github.com/leanprover/lean`
 #193on PLDB 8Years Old 2kRepos

Try now: TIO

Lean Theorem Prover

Example from hello-world:
`#print "Hello World"`
Example from Linguist:
```/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: algebra.binary Authors: Leonardo de Moura, Jeremy Avigad General properties of binary operations. -/ import logic.eq open eq.ops namespace binary section variable {A : Type} variables (op₁ : A → A → A) (inv : A → A) (one : A) local notation a * b := op₁ a b local notation a ⁻¹ := inv a local notation 1 := one definition commutative := ∀a b, a * b = b * a definition associative := ∀a b c, (a * b) * c = a * (b * c) definition left_identity := ∀a, 1 * a = a definition right_identity := ∀a, a * 1 = a definition left_inverse := ∀a, a⁻¹ * a = 1 definition right_inverse := ∀a, a * a⁻¹ = 1 definition left_cancelative := ∀a b c, a * b = a * c → b = c definition right_cancelative := ∀a b c, a * b = c * b → a = c definition inv_op_cancel_left := ∀a b, a⁻¹ * (a * b) = b definition op_inv_cancel_left := ∀a b, a * (a⁻¹ * b) = b definition inv_op_cancel_right := ∀a b, a * b⁻¹ * b = a definition op_inv_cancel_right := ∀a b, a * b * b⁻¹ = a variable (op₂ : A → A → A) local notation a + b := op₂ a b definition left_distributive := ∀a b c, a * (b + c) = a * b + a * c definition right_distributive := ∀a b c, (a + b) * c = a * c + b * c end context variable {A : Type} variable {f : A → A → A} variable H_comm : commutative f variable H_assoc : associative f infixl `*` := f theorem left_comm : ∀a b c, a*(b*c) = b*(a*c) := take a b c, calc a*(b*c) = (a*b)*c : H_assoc ... = (b*a)*c : H_comm ... = b*(a*c) : H_assoc theorem right_comm : ∀a b c, (a*b)*c = (a*c)*b := take a b c, calc (a*b)*c = a*(b*c) : H_assoc ... = a*(c*b) : H_comm ... = (a*c)*b : H_assoc end context variable {A : Type} variable {f : A → A → A} variable H_assoc : associative f infixl `*` := f theorem assoc4helper (a b c d) : (a*b)*(c*d) = a*((b*c)*d) := calc (a*b)*(c*d) = a*(b*(c*d)) : H_assoc ... = a*((b*c)*d) : H_assoc end end binary ```

## Language features

Feature Supported Token Example
`"Hello world"`